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Abstract The Wigner theorem, in its Uhlhorn’s formulation, states that a bijective transfor-
mation of the set of all one-dimensional linear subspaces of a complex Hilbert space which
preserves orthogonality is induced by either a unitary or an antiunitary operator. There ex-
ist in the literature many Wigner-type theorems and the purpose of this paper is to prove
in an algebraic setting a very general Wigner-type theorem for projections (idempotent lin-
ear mappings). As corollaries, Wigner-type theorems for projections in real locally convex
spaces, infinite dimensional complex normed spaces and Hilbert spaces are obtained.
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1 Introduction

The Wigner theorem states that if H is a complex Hilbert space and S a bijective trans-
formation of the set of all one-dimensional linear subspaces of H which preserves angles
between any pair of such subspaces or, in the terminology of quantum mechanics, the transi-
tion probability between pure states, then S is induced by a unitary or an antiunitary operator
on H.If dim H > 3, Uhlhorn [15] improved this result by requiring that S only preserves
the orthogonality between the one-dimensional subspaces.

This theorem plays a fundamental role in quantum mechanics and there exist in the lit-
erature many generalizations of this result, in particular to indefinite metric spaces [2, 10],
von Neumann algebras [9], complex Banach spaces [10], projections of rank one in Banach
spaces [10].

The aim of this paper is to prove, in an algebraic setting, a very general Wigner-type
theorem in its Uhlhorn’s formulation for projections and then to apply it to get Wigner-type
theorems for continuous projections in usual topological structures as locally convex spaces,
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normed spaces and Hilbert spaces. In the whole of the paper, by a projection we mean an
idempotent linear mapping, sometimes also called a skew projection.

Our method has its origin in [12] where the author describes the form of the automor-
phisms of the poset of all projections defined on a Hilbert space H by means of automor-
phisms and antiautomorphisms of the lattice of all closed subspaces of H. This paper shows
that it is often more interesting to consider a continuous projection as a pair of closed sub-
spaces, its image and its kernel, rather than a mapping. We specify this approach in Sect. 2
where we recall some results of [3, 4]. In particular, to any lattice L with properties of lat-
tices of closed subspaces is associated a subset P(L) of L x L, called its orthoposet of
projections. If L is the lattices of all closed subspaces of a locally convex spaces E then
P(L) is isomorphic to the poset of all weakly continuous projections defined on E and a
generalization of the main result of [12] to the poset P (L) is given.

The first part of Sect. 3 is devoted to extend a bijection ¢ of the atoms of a poset of pro-
jections P (L) which preserves orthogonality to an automorphism of the orthoposet P(L).
Then, by using a result about the automorphisms of lattices of closed subspaces, we prove
a Wigner-type theorem for a first class of bijection ¢, the ones which transform projec-
tions with the same image into projections with the same image. As corollaries, we obtain
Wigner-type theorems for projections in real locally convex spaces and infinite dimensional
complex normed spaces.

In Sect. 4, by using Hermitian spaces, we obtain a Wigner-type theorem for bijections ¢
which transform projections with the same image into projections with the same kernel.
A corollary gives a Wigner-type theorem for projections in Hilbert spaces.

2 The Orthomodular Poset of Projections of a Lattice
2.1 Definition and Structure

Let a and b be two elements of a lattice L. We say that (a, b) is a modular pair, and write
(a,b)M, when

(xVva)Ab=xV(anb) foreveryx <b.

If (a, b)M holds in the dual lattice L* of L, we say that (a, b) is a dual-modular pair and
write (a, b)M*.

A lattice L is said to be M-symmetric if (a, b)M implies (b, a)M and M*-symmetric
if L* is M-symmetric. A symmetric lattice [8] is a lattice which is M-symmetric and M*-
symmetric.

Let L be a symmetric lattice with O and 1. The direct product of L and L* is also a lattice
and the set of all elements (a, b) of L x L* such that in the lattice L,

avb=1, anb=0, (a,b)M, (a,b)M~,

is called the projection poset of L. This poset is denoted by P (L) and any element of P (L)
is called a projection of L. If p = (a, b) is a projection then, according to the possible
geometrical interpretation of p, a is called the image of p and b the kernel of p.

If (a, b) is a projection of L then, as L is a symmetric lattice, (b, a) is also a projection
and we write (b, a) = (a, b)* and define (a, b) L (¢, d) if (a, b) < (c,d)* .

Proposition 1 ([4, 11]) If L is a symmetric lattice with 0 and 1 then (P (L), <, 1) is an
orthomodular poset (abbreviated OMP).
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The following result shows that our lattice definition of a projection agrees, up to an
isomorphism, to the usual concept of a continuous linear projection defined on a locally
convex space.

Theorem 1 ([4]) Let E be a locally convex space and L its lattice of all closed subspaces.
The projection orthoposet P(L) is isomorphic to the orthoposet of all weakly continuous
linear projections defined on E.

If E is metrizable then a linear mapping f : E — E is continuous if an only if f is
weakly continuous [13, Chap. IV, 7.4] and so, the orthoposet of projections of the lattice of
all closed subspaces of a metrizable locally convex space E is isomorphic to the orthoposet
of all continuous linear projections defined on E.

An AC-lattice [8] is an atomistic lattice with the covering property: if p is an atom and
anp=0thena<aVv pthatisa<x <aV pimpliesa=xoraV p=x.

If L and L* are AC-lattices, L is called a DAC-lattice. Any DAC-lattice is symmetric
and finite-modular [8, Theorem 27.5] and, in general, L, will denote the modular lattice of
all finite or cofinite elements of the DAC-lattice L. Irreducible complete DAC-lattices of
height > 4 are representable by lattices of closed subspaces and many lattices of subspaces
are DAC-lattices [8].

An irreducible DAC-lattice L is called a G-lattice [4] if L is complete or if L is modular
and complemented. Typical examples of G-lattices are obtained by considering a Hilbert
space H': the lattice of all closed subspaces of H is a G-lattice as a complete irreducible
DAC-lattice and its sublattice of finite or cofinite dimensional elements is a G-lattice as a
complemented modular irreducible DAC-lattice. Any G-lattice of height > 4 has the follow-
ing properties:

e Any atom has more than one complement;
e If a < b then there exist different atoms p; and p, suchthata Vv py =a Vv p, =b;
e Two different atoms have a common complement.

2.2 Automorphisms of an Orthoposet of Projections

The following main result of [3] is a generalization of a theorem of [12] and it gives a de-
scription of automorphisms of a projection orthoposet P(L) by means of automorphisms
and antiautomorphisms of the lattice L when L is a G-lattice. Moreover, it is proved in
[4] that there are exactly two kinds of automorphisms on an orthoposet of projections: the
so-called even automorphisms which transform projections with the same image into pro-
jections with the same image and the odd automorphisms which transform projections with
the same image into projections with the same kernel. This fact generalizes a theorem of
[12].

Theorem 2 ([3]) Let L be a G-lattice of height > 4. For any automorphism ¢ of the ortho-
poset P(L) there exists

(1) an automorphism f of the lattice L such that ¢ ((a, b)) = (f(a), f (b)), (a,b) € P(L),
if ¢ is even,

(2) an anti-automorphism g of the lattice L such that ¢ ((a, b)) = (g(b), g(a)), (a,b) €
P(L),if ¢ is odd.
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Conversely, if f is an automorphism of L then ¢ : P(L) — L x L*, defined by ¢ ((a, b)) =
(f(a), f (b)), is an even automorphism of P (L) and if g is an anti-automorphism of L then
Y P(L)+— L x L*, defined by ¥ ((a, b)) = (g(b), g(a)), is an odd automorphism of P(L).

Let L be a symmetric lattice. Define on the orthoposet P (L) a binary relation L by:
(a,b) Ly (c,d)y = b=>c.
It is straightforward to check that:
plgsepligandg L p.

The binary relation 1, allows one to characterize even automorphisms among automor-
phisms of an orthoposet of projections.

Proposition 2 Let P (L) be the orthoposet of projections of a G-lattice L of height > 4 and
®:P(L)— P(L).

(1) If @ preserves L, in both directions then @ also preserves L.
(2) The mapping @ is an even automorphism of P (L) if and only if ®@ is an automorphism
which preserves L in both directions.

Proof (1) Let p and g be two projections. We can write:

plgepligandg L) p<s @(p) L @(g)and @(q) L @(p)
& P(p) L D(q).

(2) Assume that @ is an even automorphism and let f : L — L be the automorphism of
L such that @ (a, b) = (f(a), f(b)). For two projections (a, b) and (c, d), we have:

(@,b) Li(c,d) & b=co f(b)=(f(c) & (fla), f(b) Li (f(c), f(d))
& @(a,b) Ly P(c,d).

Now assume that @ is an odd automorphism and let g be the antiautomorphism of L
satisfying @ (a, b) = (g(b), g(a)). Let o and S be two different atoms of L and let y
be a common complement for « and B. The pairs (¢, y) and (y, B) are projections and
(o, ) Ly (y, B). Since @ and B are incomparable, g(«) and g(B8) are also incomparable

and ¢ (e, y) = (g(¥). g(@)) L1 (g(B). g(»)) = ¢(y. ) does not hold true. The odd auto-
morphism ¢ does not preserve L. O

Remark
(1) Consider the binary relation L, define on P (L) by
(a,b) L, (c,d) & a<d.
We have
plgepligandp lsqg
and @ is an odd automorphism of P (L) if and only if @ is an automorphism such that

plag e @(q) L, P(p).
@ Springer
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(2) If p and ¢q are linear projections defined on a vector space then p 1, ¢ means Img C
ker p and is equivalent to pg = 0. Therefore, the automorphism @ is even if and only if
pq=05 D(p)P(q)=0and, if @ isodd, pg =0« D(q)P(p) =0.

3 A Wigner-Type Theorem for Projections in DAC-Lattices

In this section, we will prove a Wigner-type theorem for projections of a DAC-lattice L.
Since P (L) is only an orthoposet, some preliminary results are necessary to extend a bijec-
tion ¢ of the atoms of P (L) which preserves orthogonality to an automorphism of P(L).

3.1 Preliminary Results

A projection p = (a, b) is called finite if @ = 0 or is a join of a finite number of atoms and
the height of a [8, Definition 8.5], is called the height of p. If b is a meet of a finite number
of coatoms then p is called a cofinite projection. For linear projections defined on a vector
space, a finite projection is also called a rank-finite projection and its height is the dimension
of its image.

Proposition 3 Let L be a G-lattice and let Ly be the modular G-lattice of all finite or
cofinite elements of L. In P(Ly), any finite projection, different from 0, is a join of a finite
orthogonal family of atoms.

Proof The proof is by induction on the height of a finite projection of P(Lj). Assume that
any finite projection of height n > 1 is a join of a finite orthogonal family of » atoms and
let P be a projection of height n + 1. We can write P = (a,b) = (a’ v p,b) with a’ an
element of Ly of height n and p an atom such that p Aa’ = 0. Let ¢ = a’ v b. We have
pVg=aVvb=1.If p<gq then ¢ =1 and thus a and a’ are perspective with b as a
common complement. This contradicts the modularity of L since the heights of a and a’
are different. Therefore p Aq =0,¢ < pVvg=1andgq is a coatom.

Let b’ =bv p. Wehave b<b anda' Vb =a' VbV p=avb=1.Since b £a,
anb <b andanb <b.Wehavea AV =anrna Ab <aArb=0andthusa Ab =0
and (@, b) is a finite projection of height n. As (a’, b') L (p, ¢) we can write:

@,V (p.q)=(avpbrg=(ab rg)=(a,b)
since, by using the modularity of Ly and b <g¢,
VAg=bVvpAgq=bVv(pArqg)=bVv0O=hb.

Thus, any projection of height n + 1 is a join of a finite orthogonal family of n 4+ 1 atoms
and the proposition is proved by induction. O

By using the dual lattice L*, one can obtain a similar result about cofinite projection of
P(L). A family (p;) of orthogonal atoms of P(Lg) such that p =\/ p; is called a basis
for p.
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3.2 Extension of the Bijection

Theorem 3 Let L be a G-lattice of height > 4. If ¢ is a bijection of the set of all atoms of
P (L) satisfying for any atoms p, q,

pLlagsoelp) Lelq)

then ¢ can be extended to an automorphism ¢ of the orthomodular poset P(L).

Proof In a first step of the proof, we will extend ¢ to an automorphism of the orthomodular
poset of all finite or cofinite projections.

Let \/!", p; and \//_, g; be two joins of orthogonal atoms of P(L). Assume that
V' ¢ <\, pi. For any atom p = ¢(q) of P(L) we can write:

p=0(q@) L \/ o(p) & foralli e [1,m]. ¢(g) Lo(p)
i=1
& foralli e[1,m], g L p;

@)CIJ—\/PI'

i=1

:NIJ-\/%'
i=1

& foralli €[1,n], g Lg;
& foralli e[1,n], p=o(q) L eg)

& p L\ @)

i=1

Since P (L) is atomistic [4, Lemma 6], we have \//_, ¢(g:) < \/'_, ¢(p:). Since ¢~' shares
the properties of @, \/'_, ¢(g:) < V', ¢(p;) implies \/'_, ¢; < /i, p;. In particular,
VI g = /1Ly py is cquivalent to \//- ¢(ai) = /™, ().

If (pi)iei,m) 1s a basis for the finite projection p # 0, we can define ¢ by ¢(p) =
VL, ¢(p;) and complete this definition by ¢(0) = 0. Now if p is a cofinite projection let
¢(p)=(p(p*N*.

Note that, for any finite or cofinite projection p, ¢(p)* =@ (p™r).

In order to prove that the mapping ¢ is onto, let p € P(Ly). If p =0, p = ¢(0) and if
p is finite and different from 0, then p = \/|_, p;, with p; atom of P(Ly), and we have
r=¢o\1_; @~ '(py)). If p is cofinite then there exits ¢ such that p = ¢(g) and p =
(@) =9(gh).

Now, we will prove that ¢ is an automorphism of the poset P(Lg). Let p and g be two
elements of P(Ly). If (p, ¢q) is a pair of finite projections or a pair of cofinite projections, it
is clear that:

P=q=¢(p)=9(q).
Now if p is an atom of P(Lo) and g is cofinite, ¢ = A\]_, qiL, g; atom of P(Lg), we have:
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p<q&Viell,n], p<qg-&Viell,n], pLlg
& Viell,nl, o(p) Lo(g) & Viell,nl, o(p) <eg)*"

n n L n 1
<o) < N\e@) = (\/Wb)) = (qﬁ(\/qi)) =¢(g")" =0 (9).
i=1 i=1

i=1

By using the definition of ¢ this equivalence is also true if p is a finite projection and thus
¢ is an automorphism of the poset P(Lg). As ¢(p)* = ¢(p), ¢ is an automorphism of the
orthomodular poset P(Ly).

Now we will extend ¢ to P(L). As Ly is a G-lattice of height > 4 then, by Theorem
2, there exists an automorphism f of the lattice Ly such that ¢ ((a, b)) = (f(a), f(])),
(a,b) € P(Ly), if ¢ is even or there exist an antiautomorphism g of L such that ¢ ((a, b)) =
(g(D), g(a)) if ¢ is odd. By Lemma 1 of [3], f can be extended to an automorphism of L
and we define ¢ for (a,b) € P(L) by ¢((a,b)) = (f(a), f(b)) if ¢ : P(Ly) — P(Lo) is
even. The extension of ¢ if ¢ : P(Lg) — P(Ly) is odd is similar.

Finally, by Proposition 6 of [4], ¢ is an automorphism of the orthomodular poset P (L)
and the proof is complete. a

Corollary 1 Let L be a G-lattice. For any bijection f of P(L) into itself the following
statements are equivalent:

(1) f preserves the orthogonality relation in both directions;

(2) the restriction of f to the set of all atoms of P (L) is a bijection of this set which pre-
serves the orthogonality relation in both directions

(3) f is an automorphism of the orthomodular poset P(L).

Proof The proof is easy by using the previous proposition, Proposition 6 of [4] saying that
any order automorphism f of P (L) satisfies f(p') = f(p)* and the fact that, in any or-
thocomplemented lattice 7,

a<beVeeT, clb=cla. O

In [14], the author consider the set P(X) of all projections defined on a Banach space X
and he proves that @ : P(X) — P(X) is an order automorphism of P (X) if and only if @
preserves the orthogonality relation in both directions.

Example Let E be an infinite dimensional vector space and let L be the G-lattice of all the
subspaces of E. Since E is infinite dimensional, L has no antiautomorphism [1, p. 111], and
therefore P (L) possesses no odd automorphism. If ¢ is a bijection of the set of all atoms of
P(L) (i.e. a bijection of the set of all projections of rank one) which preserves orthogonality
then, by the First Fundamental Theorem of projective geometry [1] and Theorems 2 and
3, there exists a semi-linear bijection s : E — E such that for any projection p = (a, b),
@ (p) = (s(a), s(b)), where @ is the extension of ¢ to P(L). If p is identified to a linear
projection then @ (p) = sps~! since Imsps~' = s(Im p) and Kersps~' = s(Ker p).

3.3 Automorphisms of Lattices of Closed Subspaces

Now, in order to obtain, by means of Theorems 2 and 3, a Wigner-type theorem for con-
tinuous projections defined on certain topological vector spaces, its is necessary to know
automorphisms and antiautomorphisms of lattices of closed subspaces.
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Let K be a field, E a left vector space over K, F a right vector space over K. If there
exists a non degenerate bilinear form B on E x F, we say that (E, F) is a pair of dual
spaces [5]. Since the form is nondegenerate, F' can be identified to a subspace of the alge-
braic dual E* of E and E to a subspace of F*.

For a subspace A of E, we put

At ={y e F|B(x,y) =0 forevery x € A}.
Similarly, let
Bt ={x € E | B(x, y) =0 for every y € B}

for every subspace B of F. A subspace A of E is called F-closed if A = A** and the set
of all F-closed subspaces, denoted by Ly (E) and ordered by set-inclusion, is a complete
irreducible DAC-lattice [8, Theorem 33.4] and therefore a G-lattice. Conversely, for any
irreducible complete DAC-lattice L of height > 4, there exists a pair (E, F) of dual spaces
such that L is isomorphic to the lattice of all F-closed subspaces of E [8, Theorem 33.7],
[7, §10.3].

The set of all E-closed subspaces of F' is similarly defined and is also a complete DAC-
lattice. The two DAC-lattices L (E) and Lg(F) are dual isomorphic by the mapping A —
AL [8, Theorem 33.4].

Let (E, F) be a pair of dual spaces. The linear weak topology on E, denoted by o (E, F),
is the linear topology defined by taking {G* | G C F, dim G < 0o} as a basis of neighbor-
hoods of 0. If F is interpreted as a subspace of the algebraic dual of E then a subbasis of
neighborhoods of 0 consists of kernels of elements of F.

The linear weak topology on F, noted o (F, E), is defined in the same way. The space
F can be interpreted as the topological dual of E for the o (E, F) topology and E as the
topological dual of F for the o (F, E) topology. Equipped with their linear weak topologies,
E and F are topological vector spaces [7, §10.3] if the topology on K is discrete.

In the following proposition, we generalize the First Fundamental Theorem of projective
geometry related to automorphisms of the lattice of all subspaces of a vector space to lattices
of closed subspaces.

Proposition 4 ([3]) Let (Ey, F1) and (E,, F») be two pairs of dual spaces over the fields
K1 and K. If there exists an isomorphism s of the lattice L, (E) onto the lattice L, (E,)
then K, and K, are isomorphic fields and there exists a semi-linear bijection s : E| — E,
such that, for every Fi-closed subspace M of Ei, (M) = s(M).

In the case of lattices of all subspaces of a vector space, any semi-linear bijection in-
duces a lattice automorphism. For lattices of closed subspaces, only continuous semi-linear
bijections are allowed and more precisely we have:

Proposition 5 ([3]) Let (Ei, F\) and (E,, F;) be two pairs of dual spaces over the
same field. If E| and E, are equipped, respectively, with the o (E,, Fy)-topology and the
o (E,, Fy)-topology then, for every semi-linear bijection s : E| — E,, the following state-
ments are equivalent.

(1) The bijection s is bicontinuous (i.e. both s and s~ are continuous).

(2) H € Ly (Ey) > s(H) is a bijection from the set of all Fi-closed hyperplanes of E onto
the set of all F»-closed hyperplanes of E,.

(3) M € Ly, (Ey) > s(M) is an isomorphism from the lattice L, (E\) onto L, (E>).
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3.4 A Wigner-Type Theorem in Topological Vector Spaces in the Even Case

A bijection ¢ of the atoms of a projection lattice P(L) is called an even bijection if ¢
transform projections with the same image into projections with the same image. If an even
bijection ¢ extends to an automorphism of P (L) then this automorphism is even.

Theorem 4 Let ¢ be an even bijection of the atoms of the projection orthoposet of the
G-lattice of all F-closed subspaces of a dual pair (E, F). If ¢ preserves orthogonality,

pLgsolp) Lo,

then ¢ extends to an even automorphism @ of the orthoposet P(Lp(E)) and there exists
a weakly bicontinuous semi-linear bijection s : E — E such that, for any projection p =

(a, b)
D (p) = (s(a), s(b)).

Proof By using Theorem 3, ¢ extends to an automorphism of the orthoposet of projections
of the G-lattice L (E). Since @ is even there exists by Theorem 2 an automorphism f of
Lp(E) such that @ (a, b) = (f(a), f(b)). By using Propositions 4 and 5, f is induced by a
weakly bicontinuous semi-linear bijection s. O

By particularizing the dual pair (E, F), we can obtain several corollaries of this theo-
rem. In these corollaries, a projection is now considered as a linear mapping and thus the
conclusion of the previous theorem becomes @ (p) = sps~! since Imsps~' = s(Im p) and
Kersps™' = s(Ker p).

First, we recall that a linear mapping f, defined on a locally convex space E over K =R
or C, is weakly continuous if and only f is continuous with respect to the linear weak
topology o (E, E') [7, 20.4] where E’ denotes the topological dual of E and, if K = R then
a semi-linear mapping is linear since the identity is the only automorphism of the field R.

Corollary 2 Let E be a real locally convex space. If ¢ is a even bijection of the set of all
rank-one weakly continuous projections which preserves orthogonality in both directions
then:

(1) ¢ extends to an even automorphism of the orthoposets Proj(E) of all weakly continuous
projections of E,

(2) there exists a weakly bicontinuous linear bijection s : E — E such that, for any projec-
tion p, @ (p) =sps—\.

If E is metrizable then Proj(E) is the orthoposet of all continuous projections and s is

bicontinuous.

For the last claim of this corollary, we have used the fact that weakly continuous linear
mappings between metrizable spaces are continuous [13, Chap. IV, 3.4 and 7.4].

If K = C then the automorphism t associated to the semi-linear bijection s of Theorem
4 can be not continuous (In a locally convex space over a field K, the topology on K is not
the discrete one but is defined by means of the modulus) and an hypothesis stronger than
locally convex seems necessary.
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Corollary 3 Let E be an infinite-dimensional complex normed spaces. If ¢ is a even bijec-
tion of the set of all rank-one continuous projections which preserves orthogonality in both
directions then ¢ extends to an even automorphism @ of the orthoposet of all continuous
projections and there exists a bicontinuous linear or conjugate linear bijection s : E — E

such that, for any projection p, ®(p) = sps~L.

Proof Let s be the semi-linear bijection obtained by using Theorem 4. Since s is continu-
ous for the weak linear topology, s carries orthogonally closed hyperplanes to orthogonally
closed hyperplanes (Proposition 5). But orthogonally closed subspaces of E agree with topo-
logically closed subspaces [7, §20, 3(2)] and, by using a result of [6], s is either linear or
conjugate linear. A linear mapping on a metrizable space E is continuous if and only if this
mapping is continuous for the weak linear topology o (E, E") and the generalization of this
result to a conjugate linear mapping is easy. Thus, s is continuous and by, using a similar
proof, s~! is also continuous. O

Remark In [10], the same result is proved for real or complex Banach spaces.

4 A Wigner-Type Theorem for Odd Automorphisms

There exist odd automorphisms on an orthoposet of projections P(L) if and only if the
lattice L has antiautomorphisms. If L is the lattice of all subspaces of a vector space E then
the situation is clear: if E is infinite dimensional, L has no antiautomorphism and otherwise,
the anti-automorphisms of L are defined by means of non-degenerated semi-bilinear forms
[8, 16].

Now, if L is the lattice of all closed subspaces of a topological space, we don’t know the
form of the antiautomorphisms of L and prefer to study the case of Hermitian spaces. Some
definitions and results are necessary.

Let K be a field with an involutorial antiautomorphism o : A — A. A left vector space E
over K is called a Hermitian space if there exists a o-semi-bilinear form B : E x E — K
satisfying the two conditions:

e B(x,y)=B(y,x),
e B(x,x) =0 implies x =0.

The pair (E, E) is a dual pair (the second E is equipped with the right scalar product x x A =
Ax) and all the E-closed subspaces of E form an irreducible complete orthocomplemented
AC-lattice denoted by C(E). Conversely, any irreducible complete orthocomplemented AC-
lattice of height > 4 is isomorphic to the orthocomplemented lattice of all closed subspace
of a Hermitian space [8, Theorem 34.5].

Remark that a complete orthocomplemented AC-lattice is a G-lattice.

If L is an orthocomplemented AC-lattice then @ — a* is an isomorphism from L onto
L* and therefore, for any (a,b) € L,

(a,b)M < (at,bHYM* and (a,h)M* < (at,bHM.

Therefore if p = (a, b) € P(L) then (b, at) is also a projection called the adjoint of p and
denoted p*.

Proposition 6 Let L be an orthocomplemented AC-lattice. The mapping Ad : p — p* is an
odd involutary automorphism of the orthoposet P (L).
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Proof The mapping Ad is bijective and

(a,b)<(c,d) s a<candb>d
S at>ctand bt <dt
& (btat) < dt, b

& (a,b)" < (c,d)".

Moreover
(a,b) Ly (c,d) < a=d
&dt<at
& (d*t et Ly (bt ah)
< (c,d)" Ly (a,b)".
Thus, Ad is an odd automorphism of P (L) and it is clear that Ad is involutary. O

A Wigner-type theorem for projections in Hermitian space has the following form in the
case of odd bijections.

Theorem 5 Let E be an Hermitian space. If ¢ is an odd bijection of the atoms of the
projection orthoposet of C(E) which preserves orthogonality,

plqgselp)Loelg),

then ¢ extends to an odd automorphism @ of the orthoposet P(C(E)) and there exists a
weakly bicontinuous semi-linear bijection s : E — E such that, for any projection p =

(a,b)
®(a,b) = (s(bh), s(a")
or, in the language of linear projections,

@ (p)=sp*s~".

Proof By using Theorem 3, ¢ extends to an automorphism @ of the orthoposet of projec-
tions of the DAC-lattice C(E). Since @ is odd, p € P(C(E)) — @ (p*) is even and there
exists by Theorem 2 an automorphism f of C(E) such that @ ((a, b)*) = (f(a), f(b))
for any p = (a,b) € P(C(E)). That means ® (b+,a*) = (f(a), f(b)) or also $(a,b) =
(f(bY), f(at)). By using Proposition 5, f is induced by a weakly bicontinuous semi-linear
bijection s and we have ®(a, b) = (s(b*), s(ab)). In the language of linear projections,
@ (p) =sp*s~! since Im p* = (Ker p)*. O

Remark If E is a real Hilbert space then s is a linear and bicontinuous bijection and if
E is an infinite dimensional complex Hilbert space then s is a linear or conjugate linear
bicontinuous bijection. In [12], the main result states that if @ is an automorphism of the
orthomodular poset of projections in a complex Hilbert space H then there exists a semi-
linear linear bijection s : H — H such that @ (p) =sps~! or @(p) = sp*s~'. Moreover, if
H is infinite dimensional, then s is a linear or conjugate linear bicontinuous bijection.
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