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Abstract The Wigner theorem, in its Uhlhorn’s formulation, states that a bijective transfor-
mation of the set of all one-dimensional linear subspaces of a complex Hilbert space which
preserves orthogonality is induced by either a unitary or an antiunitary operator. There ex-
ist in the literature many Wigner-type theorems and the purpose of this paper is to prove
in an algebraic setting a very general Wigner-type theorem for projections (idempotent lin-
ear mappings). As corollaries, Wigner-type theorems for projections in real locally convex
spaces, infinite dimensional complex normed spaces and Hilbert spaces are obtained.
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1 Introduction

The Wigner theorem states that if H is a complex Hilbert space and S a bijective trans-
formation of the set of all one-dimensional linear subspaces of H which preserves angles
between any pair of such subspaces or, in the terminology of quantum mechanics, the transi-
tion probability between pure states, then S is induced by a unitary or an antiunitary operator
on H . If dimH ≥ 3, Uhlhorn [15] improved this result by requiring that S only preserves
the orthogonality between the one-dimensional subspaces.

This theorem plays a fundamental role in quantum mechanics and there exist in the lit-
erature many generalizations of this result, in particular to indefinite metric spaces [2, 10],
von Neumann algebras [9], complex Banach spaces [10], projections of rank one in Banach
spaces [10].

The aim of this paper is to prove, in an algebraic setting, a very general Wigner-type
theorem in its Uhlhorn’s formulation for projections and then to apply it to get Wigner-type
theorems for continuous projections in usual topological structures as locally convex spaces,
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normed spaces and Hilbert spaces. In the whole of the paper, by a projection we mean an
idempotent linear mapping, sometimes also called a skew projection.

Our method has its origin in [12] where the author describes the form of the automor-
phisms of the poset of all projections defined on a Hilbert space H by means of automor-
phisms and antiautomorphisms of the lattice of all closed subspaces of H . This paper shows
that it is often more interesting to consider a continuous projection as a pair of closed sub-
spaces, its image and its kernel, rather than a mapping. We specify this approach in Sect. 2
where we recall some results of [3, 4]. In particular, to any lattice L with properties of lat-
tices of closed subspaces is associated a subset P (L) of L × L, called its orthoposet of
projections. If L is the lattices of all closed subspaces of a locally convex spaces E then
P (L) is isomorphic to the poset of all weakly continuous projections defined on E and a
generalization of the main result of [12] to the poset P (L) is given.

The first part of Sect. 3 is devoted to extend a bijection ϕ of the atoms of a poset of pro-
jections P (L) which preserves orthogonality to an automorphism of the orthoposet P (L).
Then, by using a result about the automorphisms of lattices of closed subspaces, we prove
a Wigner-type theorem for a first class of bijection ϕ, the ones which transform projec-
tions with the same image into projections with the same image. As corollaries, we obtain
Wigner-type theorems for projections in real locally convex spaces and infinite dimensional
complex normed spaces.

In Sect. 4, by using Hermitian spaces, we obtain a Wigner-type theorem for bijections ϕ

which transform projections with the same image into projections with the same kernel.
A corollary gives a Wigner-type theorem for projections in Hilbert spaces.

2 The Orthomodular Poset of Projections of a Lattice

2.1 Definition and Structure

Let a and b be two elements of a lattice L. We say that (a, b) is a modular pair, and write
(a, b)M , when

(x ∨ a) ∧ b = x ∨ (a ∧ b) for every x ≤ b.

If (a, b)M holds in the dual lattice L∗ of L, we say that (a, b) is a dual-modular pair and
write (a, b)M∗.

A lattice L is said to be M-symmetric if (a, b)M implies (b, a)M and M∗-symmetric
if L∗ is M-symmetric. A symmetric lattice [8] is a lattice which is M-symmetric and M∗-
symmetric.

Let L be a symmetric lattice with 0 and 1. The direct product of L and L∗ is also a lattice
and the set of all elements (a, b) of L × L∗ such that in the lattice L,

a ∨ b = 1, a ∧ b = 0, (a, b)M, (a, b)M∗,

is called the projection poset of L. This poset is denoted by P (L) and any element of P (L)

is called a projection of L. If p = (a, b) is a projection then, according to the possible
geometrical interpretation of p, a is called the image of p and b the kernel of p.

If (a, b) is a projection of L then, as L is a symmetric lattice, (b, a) is also a projection
and we write (b, a) = (a, b)⊥ and define (a, b) ⊥ (c, d) if (a, b) ≤ (c, d)⊥.

Proposition 1 ([4, 11]) If L is a symmetric lattice with 0 and 1 then (P (L),≤,⊥) is an
orthomodular poset (abbreviated OMP).
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The following result shows that our lattice definition of a projection agrees, up to an
isomorphism, to the usual concept of a continuous linear projection defined on a locally
convex space.

Theorem 1 ([4]) Let E be a locally convex space and L its lattice of all closed subspaces.
The projection orthoposet P (L) is isomorphic to the orthoposet of all weakly continuous
linear projections defined on E.

If E is metrizable then a linear mapping f : E → E is continuous if an only if f is
weakly continuous [13, Chap. IV, 7.4] and so, the orthoposet of projections of the lattice of
all closed subspaces of a metrizable locally convex space E is isomorphic to the orthoposet
of all continuous linear projections defined on E.

An AC-lattice [8] is an atomistic lattice with the covering property: if p is an atom and
a ∧ p = 0 then a � a ∨ p that is a ≤ x ≤ a ∨ p implies a = x or a ∨ p = x.

If L and L∗ are AC-lattices, L is called a DAC-lattice. Any DAC-lattice is symmetric
and finite-modular [8, Theorem 27.5] and, in general, L0 will denote the modular lattice of
all finite or cofinite elements of the DAC-lattice L. Irreducible complete DAC-lattices of
height ≥ 4 are representable by lattices of closed subspaces and many lattices of subspaces
are DAC-lattices [8].

An irreducible DAC-lattice L is called a G-lattice [4] if L is complete or if L is modular
and complemented. Typical examples of G-lattices are obtained by considering a Hilbert
space H : the lattice of all closed subspaces of H is a G-lattice as a complete irreducible
DAC-lattice and its sublattice of finite or cofinite dimensional elements is a G-lattice as a
complemented modular irreducible DAC-lattice. Any G-lattice of height ≥ 4 has the follow-
ing properties:

• Any atom has more than one complement;
• If a � b then there exist different atoms p1 and p2 such that a ∨ p1 = a ∨ p2 = b;
• Two different atoms have a common complement.

2.2 Automorphisms of an Orthoposet of Projections

The following main result of [3] is a generalization of a theorem of [12] and it gives a de-
scription of automorphisms of a projection orthoposet P (L) by means of automorphisms
and antiautomorphisms of the lattice L when L is a G-lattice. Moreover, it is proved in
[4] that there are exactly two kinds of automorphisms on an orthoposet of projections: the
so-called even automorphisms which transform projections with the same image into pro-
jections with the same image and the odd automorphisms which transform projections with
the same image into projections with the same kernel. This fact generalizes a theorem of
[12].

Theorem 2 ([3]) Let L be a G-lattice of height ≥ 4. For any automorphism φ of the ortho-
poset P (L) there exists

(1) an automorphism f of the lattice L such that φ((a, b)) = (f (a), f (b)), (a, b) ∈ P (L),
if φ is even,

(2) an anti-automorphism g of the lattice L such that φ((a, b)) = (g(b), g(a)), (a, b) ∈
P (L), if φ is odd.
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Conversely, if f is an automorphism of L then φ : P (L) 
→ L × L∗, defined by φ((a, b)) =
(f (a), f (b)), is an even automorphism of P (L) and if g is an anti-automorphism of L then
ψ : P (L) 
→ L×L∗, defined by ψ((a, b)) = (g(b), g(a)), is an odd automorphism of P (L).

Let L be a symmetric lattice. Define on the orthoposet P (L) a binary relation ⊥1 by:

(a, b) ⊥1 (c, d) ⇔ b ≥ c.

It is straightforward to check that:

p ⊥ q ⇔ p ⊥1 q and q ⊥1 p.

The binary relation ⊥1 allows one to characterize even automorphisms among automor-
phisms of an orthoposet of projections.

Proposition 2 Let P (L) be the orthoposet of projections of a G-lattice L of height ≥ 4 and
Φ : P (L) → P (L).

(1) If Φ preserves ⊥1 in both directions then Φ also preserves ⊥.
(2) The mapping Φ is an even automorphism of P (L) if and only if Φ is an automorphism

which preserves ⊥1 in both directions.

Proof (1) Let p and q be two projections. We can write:

p ⊥ q ⇔ p ⊥1 q and q ⊥1 p ⇔ Φ(p) ⊥1 Φ(q) and Φ(q) ⊥1 Φ(p)

⇔ Φ(p) ⊥ Φ(q).

(2) Assume that Φ is an even automorphism and let f : L → L be the automorphism of
L such that Φ(a,b) = (f (a), f (b)). For two projections (a, b) and (c, d), we have:

(a, b) ⊥1 (c, d) ⇔ b ≥ c ⇔ f (b) ≥ (f (c) ⇔ (f (a), f (b)) ⊥1 (f (c), f (d))

⇔ Φ(a,b) ⊥1 Φ(c, d).

Now assume that Φ is an odd automorphism and let g be the antiautomorphism of L

satisfying Φ(a,b) = (g(b), g(a)). Let α and β be two different atoms of L and let γ

be a common complement for α and β . The pairs (α, γ ) and (γ,β) are projections and
(α, γ ) ⊥1 (γ,β). Since α and β are incomparable, g(α) and g(β) are also incomparable
and φ(α,γ ) = (g(γ ), g(α)) ⊥1 (g(β), g(γ )) = φ(γ,β) does not hold true. The odd auto-
morphism φ does not preserve ⊥1. �

Remark

(1) Consider the binary relation ⊥2 define on P (L) by

(a, b) ⊥2 (c, d) ⇔ a ≤ d.

We have

p ⊥ q ⇔ p ⊥1 q and p ⊥2 q

and Φ is an odd automorphism of P (L) if and only if Φ is an automorphism such that

p ⊥2 q ⇔ Φ(q) ⊥2 Φ(p).



Int J Theor Phys (2008) 47: 69–80 73

(2) If p and q are linear projections defined on a vector space then p ⊥1 q means Imq ⊂
kerp and is equivalent to pq = 0. Therefore, the automorphism Φ is even if and only if
pq = 0 ⇔ Φ(p)Φ(q) = 0 and, if Φ is odd, pq = 0 ⇔ Φ(q)Φ(p) = 0.

3 A Wigner-Type Theorem for Projections in DAC-Lattices

In this section, we will prove a Wigner-type theorem for projections of a DAC-lattice L.
Since P (L) is only an orthoposet, some preliminary results are necessary to extend a bijec-
tion ϕ of the atoms of P (L) which preserves orthogonality to an automorphism of P (L).

3.1 Preliminary Results

A projection p = (a, b) is called finite if a = 0 or is a join of a finite number of atoms and
the height of a [8, Definition 8.5], is called the height of p. If b is a meet of a finite number
of coatoms then p is called a cofinite projection. For linear projections defined on a vector
space, a finite projection is also called a rank-finite projection and its height is the dimension
of its image.

Proposition 3 Let L be a G-lattice and let L0 be the modular G-lattice of all finite or
cofinite elements of L. In P (L0), any finite projection, different from 0, is a join of a finite
orthogonal family of atoms.

Proof The proof is by induction on the height of a finite projection of P (L0). Assume that
any finite projection of height n ≥ 1 is a join of a finite orthogonal family of n atoms and
let P be a projection of height n + 1. We can write P = (a, b) = (a′ ∨ p,b) with a′ an
element of L0 of height n and p an atom such that p ∧ a′ = 0. Let q = a′ ∨ b. We have
p ∨ q = a ∨ b = 1. If p ≤ q then q = 1 and thus a and a′ are perspective with b as a
common complement. This contradicts the modularity of L0 since the heights of a and a′

are different. Therefore p ∧ q = 0, q � p ∨ q = 1 and q is a coatom.
Let b′ = b ∨ p. We have b � b′ and a′ ∨ b′ = a′ ∨ b ∨ p = a ∨ b = 1. Since b′

� a,
a ∧ b′ < b′ and a ∧ b′ ≤ b. We have a ∧ b′ = a ∧ a′ ∧ b′ ≤ a ∧ b = 0 and thus a′ ∧ b′ = 0
and (a′, b′) is a finite projection of height n. As (a′, b′) ⊥ (p, q) we can write:

(a′, b′) ∨ (p, q) = (a′ ∨ p,b′ ∧ q) = (a, b′ ∧ q) = (a, b)

since, by using the modularity of L0 and b ≤ q ,

b′ ∧ q = (b ∨ p) ∧ q = b ∨ (p ∧ q) = b ∨ 0 = b.

Thus, any projection of height n + 1 is a join of a finite orthogonal family of n + 1 atoms
and the proposition is proved by induction. �

By using the dual lattice L∗, one can obtain a similar result about cofinite projection of
P (L). A family (pi) of orthogonal atoms of P (L0) such that p = ∨

pi is called a basis
for p.
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3.2 Extension of the Bijection

Theorem 3 Let L be a G-lattice of height ≥ 4. If ϕ is a bijection of the set of all atoms of
P (L) satisfying for any atoms p, q ,

p ⊥ q ⇔ ϕ(p) ⊥ ϕ(q)

then ϕ can be extended to an automorphism φ of the orthomodular poset P (L).

Proof In a first step of the proof, we will extend ϕ to an automorphism of the orthomodular
poset of all finite or cofinite projections.

Let
∨m

i=1 pi and
∨n

i=1 qi be two joins of orthogonal atoms of P (L0). Assume that∨n

i=1 qi ≤ ∨m

i=1 pi. For any atom p = ϕ(q) of P (L) we can write:

p = ϕ(q) ⊥
m∨

i=1

ϕ(pi) ⇔ for all i ∈ [1,m], ϕ(q) ⊥ ϕ(pi)

⇔ for all i ∈ [1,m], q ⊥ pi

⇔ q ⊥
m∨

i=1

pi

⇒ q ⊥
n∨

i=1

qi

⇔ for all i ∈ [1, n], q ⊥ qi

⇔ for all i ∈ [1, n], p = ϕ(q) ⊥ ϕ(qi)

⇔ p ⊥
n∨

i=1

ϕ(qi).

Since P (L) is atomistic [4, Lemma 6], we have
∨n

i=1 ϕ(qi) ≤ ∨m

i=1 ϕ(pi). Since ϕ−1 shares
the properties of ϕ,

∨n

i=1 ϕ(qi) ≤ ∨m

i=1 ϕ(pi) implies
∨n

i=1 qi ≤ ∨m

i=1 pi. In particular,
∨n

i=1 qi = ∨m

i=1 pi is equivalent to
∨n

i=1 ϕ(qi) = ∨m

i=1 ϕ(pi).

If (pi)i∈[1,m] is a basis for the finite projection p �= 0, we can define φ by φ(p) =∨m

i=1 ϕ(pi) and complete this definition by φ(0) = 0. Now if p is a cofinite projection let
φ(p) = (φ(p⊥))⊥.

Note that, for any finite or cofinite projection p, φ(p)⊥ = φ(p⊥).
In order to prove that the mapping φ is onto, let p ∈ P (L0). If p = 0, p = φ(0) and if

p is finite and different from 0, then p = ∨n

1=1 pi , with pi atom of P (L0), and we have
p = φ(

∨n

1=1 ϕ−1(pi)). If p is cofinite then there exits q such that p⊥ = φ(q) and p =
(φ(q))⊥ = φ(q⊥).

Now, we will prove that φ is an automorphism of the poset P (L0). Let p and q be two
elements of P (L0). If (p, q) is a pair of finite projections or a pair of cofinite projections, it
is clear that:

p ≤ q ⇔ φ(p) ≤ φ(q).

Now if p is an atom of P (L0) and q is cofinite, q = ∧n

i=1 q⊥
i , qi atom of P (L0), we have:
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p ≤ q ⇔ ∀i ∈ [1, n], p ≤ q⊥
i ⇔ ∀i ∈ [1, n], p ⊥ qi

⇔ ∀i ∈ [1, n], ϕ(p) ⊥ ϕ(qi) ⇔ ∀i ∈ [1, n], ϕ(p) ≤ ϕ(qi)
⊥

⇔ ϕ(p) ≤
n∧

i=1

ϕ(qi)
⊥ =

(
n∨

i=1

ϕ(qi)

)⊥
=

(

φ

(
n∨

i=1

qi

))⊥
= φ(q⊥)⊥ = φ(q).

By using the definition of φ this equivalence is also true if p is a finite projection and thus
φ is an automorphism of the poset P (L0). As φ(p)⊥ = φ(p⊥), φ is an automorphism of the
orthomodular poset P (L0).

Now we will extend φ to P (L). As L0 is a G-lattice of height ≥ 4 then, by Theorem
2, there exists an automorphism f of the lattice L0 such that φ((a, b)) = (f (a), f (b)),

(a, b) ∈ P (L0), if φ is even or there exist an antiautomorphism g of L0 such that φ((a, b)) =
(g(b), g(a)) if φ is odd. By Lemma 1 of [3], f can be extended to an automorphism of L

and we define φ for (a, b) ∈ P (L) by φ((a, b)) = (f (a), f (b)) if φ : P (L0) → P (L0) is
even. The extension of φ if φ : P (L0) → P (L0) is odd is similar.

Finally, by Proposition 6 of [4], φ is an automorphism of the orthomodular poset P (L)

and the proof is complete. �

Corollary 1 Let L be a G-lattice. For any bijection f of P (L) into itself the following
statements are equivalent:

(1) f preserves the orthogonality relation in both directions;
(2) the restriction of f to the set of all atoms of P (L) is a bijection of this set which pre-

serves the orthogonality relation in both directions
(3) f is an automorphism of the orthomodular poset P (L).

Proof The proof is easy by using the previous proposition, Proposition 6 of [4] saying that
any order automorphism f of P (L) satisfies f (p⊥) = f (p)⊥ and the fact that, in any or-
thocomplemented lattice T ,

a ≤ b ⇔ ∀c ∈ T , c ⊥ b ⇒ c ⊥ a. �

In [14], the author consider the set P (X) of all projections defined on a Banach space X

and he proves that Φ : P (X) → P (X) is an order automorphism of P (X) if and only if Φ

preserves the orthogonality relation in both directions.

Example Let E be an infinite dimensional vector space and let L be the G-lattice of all the
subspaces of E. Since E is infinite dimensional, L has no antiautomorphism [1, p. 111], and
therefore P (L) possesses no odd automorphism. If ϕ is a bijection of the set of all atoms of
P (L) (i.e. a bijection of the set of all projections of rank one) which preserves orthogonality
then, by the First Fundamental Theorem of projective geometry [1] and Theorems 2 and
3, there exists a semi-linear bijection s : E → E such that for any projection p = (a, b),
Φ(p) = (s(a), s(b)), where Φ is the extension of ϕ to P (L). If p is identified to a linear
projection then Φ(p) = sps−1 since Im sps−1 = s(Imp) and Ker sps−1 = s(Kerp).

3.3 Automorphisms of Lattices of Closed Subspaces

Now, in order to obtain, by means of Theorems 2 and 3, a Wigner-type theorem for con-
tinuous projections defined on certain topological vector spaces, its is necessary to know
automorphisms and antiautomorphisms of lattices of closed subspaces.
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Let K be a field, E a left vector space over K , F a right vector space over K . If there
exists a non degenerate bilinear form B on E × F , we say that (E,F ) is a pair of dual
spaces [5]. Since the form is nondegenerate, F can be identified to a subspace of the alge-
braic dual E∗ of E and E to a subspace of F ∗.

For a subspace A of E, we put

A⊥ = {y ∈ F | B(x, y) = 0 for every x ∈ A}.
Similarly, let

B⊥ = {x ∈ E | B(x, y) = 0 for every y ∈ B}
for every subspace B of F . A subspace A of E is called F -closed if A = A⊥⊥ and the set
of all F -closed subspaces, denoted by LF (E) and ordered by set-inclusion, is a complete
irreducible DAC-lattice [8, Theorem 33.4] and therefore a G-lattice. Conversely, for any
irreducible complete DAC-lattice L of height ≥ 4, there exists a pair (E,F ) of dual spaces
such that L is isomorphic to the lattice of all F -closed subspaces of E [8, Theorem 33.7],
[7, §10.3].

The set of all E-closed subspaces of F is similarly defined and is also a complete DAC-
lattice. The two DAC-lattices LF (E) and LE(F ) are dual isomorphic by the mapping A →
A⊥ [8, Theorem 33.4].

Let (E,F ) be a pair of dual spaces. The linear weak topology on E, denoted by σ(E,F ),
is the linear topology defined by taking {G⊥ | G ⊂ F, dimG < ∞} as a basis of neighbor-
hoods of 0. If F is interpreted as a subspace of the algebraic dual of E then a subbasis of
neighborhoods of 0 consists of kernels of elements of F .

The linear weak topology on F , noted σ(F,E), is defined in the same way. The space
F can be interpreted as the topological dual of E for the σ(E,F ) topology and E as the
topological dual of F for the σ(F,E) topology. Equipped with their linear weak topologies,
E and F are topological vector spaces [7, §10.3] if the topology on K is discrete.

In the following proposition, we generalize the First Fundamental Theorem of projective
geometry related to automorphisms of the lattice of all subspaces of a vector space to lattices
of closed subspaces.

Proposition 4 ([3]) Let (E1,F1) and (E2,F2) be two pairs of dual spaces over the fields
K1 and K2. If there exists an isomorphism ψ of the lattice LF1(E1) onto the lattice LF2(E2)

then K1 and K2 are isomorphic fields and there exists a semi-linear bijection s : E1 
→ E2

such that, for every F1-closed subspace M of E1, ψ(M) = s(M).

In the case of lattices of all subspaces of a vector space, any semi-linear bijection in-
duces a lattice automorphism. For lattices of closed subspaces, only continuous semi-linear
bijections are allowed and more precisely we have:

Proposition 5 ([3]) Let (E1,F1) and (E2,F2) be two pairs of dual spaces over the
same field. If E1 and E2 are equipped, respectively, with the σ(E1,F1)-topology and the
σ(E2,F2)-topology then, for every semi-linear bijection s : E1 
→ E2, the following state-
ments are equivalent.

(1) The bijection s is bicontinuous (i.e. both s and s−1 are continuous).
(2) H ∈ LF1(E1) 
→ s(H) is a bijection from the set of all F1-closed hyperplanes of E1 onto

the set of all F2-closed hyperplanes of E2.
(3) M ∈ LF1(E1) 
→ s(M) is an isomorphism from the lattice LF1(E1) onto LF2(E2).
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3.4 A Wigner-Type Theorem in Topological Vector Spaces in the Even Case

A bijection ϕ of the atoms of a projection lattice P (L) is called an even bijection if ϕ

transform projections with the same image into projections with the same image. If an even
bijection ϕ extends to an automorphism of P (L) then this automorphism is even.

Theorem 4 Let ϕ be an even bijection of the atoms of the projection orthoposet of the
G-lattice of all F -closed subspaces of a dual pair (E,F ). If ϕ preserves orthogonality,

p ⊥ q ⇔ ϕ(p) ⊥ ϕ(q),

then ϕ extends to an even automorphism Φ of the orthoposet P (LF (E)) and there exists
a weakly bicontinuous semi-linear bijection s : E → E such that, for any projection p =
(a, b)

Φ(p) = (s(a), s(b)).

Proof By using Theorem 3, ϕ extends to an automorphism of the orthoposet of projections
of the G-lattice LF (E). Since Φ is even there exists by Theorem 2 an automorphism f of
LF (E) such that Φ(a,b) = (f (a), f (b)). By using Propositions 4 and 5, f is induced by a
weakly bicontinuous semi-linear bijection s. �

By particularizing the dual pair (E,F ), we can obtain several corollaries of this theo-
rem. In these corollaries, a projection is now considered as a linear mapping and thus the
conclusion of the previous theorem becomes Φ(p) = sps−1 since Im sps−1 = s(Imp) and
Ker sps−1 = s(Kerp).

First, we recall that a linear mapping f , defined on a locally convex space E over K = R

or C, is weakly continuous if and only f is continuous with respect to the linear weak
topology σ(E,E′) [7, 20.4] where E′ denotes the topological dual of E and, if K = R then
a semi-linear mapping is linear since the identity is the only automorphism of the field R.

Corollary 2 Let E be a real locally convex space. If ϕ is a even bijection of the set of all
rank-one weakly continuous projections which preserves orthogonality in both directions
then:

(1) ϕ extends to an even automorphism of the orthoposets Proj(E) of all weakly continuous
projections of E,

(2) there exists a weakly bicontinuous linear bijection s : E → E such that, for any projec-
tion p, Φ(p) = sps−1.

If E is metrizable then Proj(E) is the orthoposet of all continuous projections and s is
bicontinuous.

For the last claim of this corollary, we have used the fact that weakly continuous linear
mappings between metrizable spaces are continuous [13, Chap. IV, 3.4 and 7.4].

If K = C then the automorphism τ associated to the semi-linear bijection s of Theorem
4 can be not continuous (In a locally convex space over a field K , the topology on K is not
the discrete one but is defined by means of the modulus) and an hypothesis stronger than
locally convex seems necessary.
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Corollary 3 Let E be an infinite-dimensional complex normed spaces. If ϕ is a even bijec-
tion of the set of all rank-one continuous projections which preserves orthogonality in both
directions then ϕ extends to an even automorphism Φ of the orthoposet of all continuous
projections and there exists a bicontinuous linear or conjugate linear bijection s : E → E

such that, for any projection p, Φ(p) = sps−1.

Proof Let s be the semi-linear bijection obtained by using Theorem 4. Since s is continu-
ous for the weak linear topology, s carries orthogonally closed hyperplanes to orthogonally
closed hyperplanes (Proposition 5). But orthogonally closed subspaces of E agree with topo-
logically closed subspaces [7, §20, 3(2)] and, by using a result of [6], s is either linear or
conjugate linear. A linear mapping on a metrizable space E is continuous if and only if this
mapping is continuous for the weak linear topology σ(E,E′) and the generalization of this
result to a conjugate linear mapping is easy. Thus, s is continuous and by, using a similar
proof, s−1 is also continuous. �

Remark In [10], the same result is proved for real or complex Banach spaces.

4 A Wigner-Type Theorem for Odd Automorphisms

There exist odd automorphisms on an orthoposet of projections P (L) if and only if the
lattice L has antiautomorphisms. If L is the lattice of all subspaces of a vector space E then
the situation is clear: if E is infinite dimensional, L has no antiautomorphism and otherwise,
the anti-automorphisms of L are defined by means of non-degenerated semi-bilinear forms
[8, 16].

Now, if L is the lattice of all closed subspaces of a topological space, we don’t know the
form of the antiautomorphisms of L and prefer to study the case of Hermitian spaces. Some
definitions and results are necessary.

Let K be a field with an involutorial antiautomorphism σ : λ → λ̄. A left vector space E

over K is called a Hermitian space if there exists a σ -semi-bilinear form B : E × E → K

satisfying the two conditions:

• B(x, y) = B(y, x),
• B(x, x) = 0 implies x = 0.

The pair (E,E) is a dual pair (the second E is equipped with the right scalar product x ∗λ =
λ̄x) and all the E-closed subspaces of E form an irreducible complete orthocomplemented
AC-lattice denoted by C(E). Conversely, any irreducible complete orthocomplemented AC-
lattice of height ≥ 4 is isomorphic to the orthocomplemented lattice of all closed subspace
of a Hermitian space [8, Theorem 34.5].

Remark that a complete orthocomplemented AC-lattice is a G-lattice.
If L is an orthocomplemented AC-lattice then a → a⊥ is an isomorphism from L onto

L∗ and therefore, for any (a, b) ∈ L,

(a, b)M ⇔ (a⊥, b⊥)M∗ and (a, b)M∗ ⇔ (a⊥, b⊥)M.

Therefore if p = (a, b) ∈ P (L) then (b⊥, a⊥) is also a projection called the adjoint of p and
denoted p∗.

Proposition 6 Let L be an orthocomplemented AC-lattice. The mapping Ad : p → p∗ is an
odd involutary automorphism of the orthoposet P (L).
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Proof The mapping Ad is bijective and

(a, b) ≤ (c, d) ⇔ a ≤ c and b ≥ d

⇔ a⊥ ≥ c⊥ and b⊥ ≤ d⊥

⇔ (b⊥, a⊥) ≤ (d⊥, c⊥)

⇔ (a, b)∗ ≤ (c, d)∗.

Moreover

(a, b) ⊥2 (c, d) ⇔ a ≤ d

⇔ d⊥ ≤ a⊥

⇔ (d⊥, c⊥) ⊥2 (b⊥, a⊥)

⇔ (c, d)∗ ⊥2 (a, b)∗.

Thus, Ad is an odd automorphism of P (L) and it is clear that Ad is involutary. �

A Wigner-type theorem for projections in Hermitian space has the following form in the
case of odd bijections.

Theorem 5 Let E be an Hermitian space. If ϕ is an odd bijection of the atoms of the
projection orthoposet of C(E) which preserves orthogonality,

p ⊥ q ⇔ ϕ(p) ⊥ ϕ(q),

then ϕ extends to an odd automorphism Φ of the orthoposet P (C(E)) and there exists a
weakly bicontinuous semi-linear bijection s : E → E such that, for any projection p =
(a, b)

Φ(a, b) = (s(b⊥), s(a⊥)

or, in the language of linear projections,

Φ(p) = sp∗s−1.

Proof By using Theorem 3, ϕ extends to an automorphism Φ of the orthoposet of projec-
tions of the DAC-lattice C(E). Since Φ is odd, p ∈ P (C(E)) → Φ(p∗) is even and there
exists by Theorem 2 an automorphism f of C(E) such that Φ((a, b)∗) = (f (a), f (b))

for any p = (a, b) ∈ P (C(E)). That means Φ(b⊥, a⊥) = (f (a), f (b)) or also Φ(a,b) =
(f (b⊥), f (a⊥)). By using Proposition 5, f is induced by a weakly bicontinuous semi-linear
bijection s and we have Φ(a,b) = (s(b⊥), s(a⊥)). In the language of linear projections,
Φ(p) = sp∗s−1 since Imp∗ = (Kerp)⊥. �

Remark If E is a real Hilbert space then s is a linear and bicontinuous bijection and if
E is an infinite dimensional complex Hilbert space then s is a linear or conjugate linear
bicontinuous bijection. In [12], the main result states that if Φ is an automorphism of the
orthomodular poset of projections in a complex Hilbert space H then there exists a semi-
linear linear bijection s : H → H such that Φ(p) = sps−1 or Φ(p) = sp∗s−1. Moreover, if
H is infinite dimensional, then s is a linear or conjugate linear bicontinuous bijection.
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